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Summary

The use of model forecasts for decision making should be optimized. With this in mind,
the concept of modelling the future is discussed from an epistemological point of view and
on the basis of a stochastic model interpretation. Traditional definitions of model statistics
make reference to an ensemble of systems. Since this does not work for a complex system
with a unique state, an alternative approach, based on the subjective (Delphi) opinion of a
group of experts, is also considered. This approach is then generalized to the situation in
which a set of competing models is available. With a Delphi method a certain likelihood
can be assigned to each model. Once the statistics is defined, one may face the issue of
predictability. In hindsight (in a ‘hindcasting mode’) models can be validated by checking
how accurate they have been describing observations and they can be falsified when their
predictions differ in an unlikely way from the observations. ‘Forecasting’ is different,
because models can never be proven. Therefore, exact prediction of the future is imposs-
ible. Definitions of predictability (two examples will be given) necessarily refer to the
range of modelled possibilities. It is argued that all model predictions - also those resulting
from physical models - should be considered as scenarios. To make rational decisions the
likelihood of all possible model forecasts has to be taken into account. In case of complex
systems and difficult decisions it appears uscful to consider a large variety of models.
Experts need not strive for consensus, because a diversity of opinions could lead to better
decisions. It is recommended that more attention is paid to Delphi aspects of forecast
likelihoods,
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1. Motivation

The present discussion - although rather general and applicable to many different systems
- was inspired by questions related with climate modelling. As is well known the
atmospheric concentration of CO, and other Greenhouse gases increases due to humam
activities. It is expected that this will lead to a disturbance of the natural climate. This has
led to political discussions, and to an increase of interest in (numerical) climate models.

In the development of these models two trends can be seen. The most advanced
physical models of the coupled atmosphere-ocean systern are still inadequate in describing
(details of) the present climate. Therefore, one seeks improvement to obtain better
description of the actual climate and more reliable ‘predictions’ of climate change.
Improvements are expected to come from an enhancement of the spatial resolution, and
from the use of more realistic sub-grid scale parametrizations, such as describing for
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example the cloud-radiation interaction or the effect of ocean waves on air/sea exchange.
An example of this approach is given by Washington and Meeh! (1989). A summary of
similar approaches is given in the IPCC report (1990, 1992).

However, it is realized that chemical, biological and socio-economical factors are also
crucial for a correct description of the anthropogenic cffects on climate. To model these,
simple physical models have been coupled with chemical, biological and socio-economic
maodels {Rotmans, 1990).

Opponents of these latter models criticize by pointing out that the physical subsystem is
modelled rather inaccurately, whereas the accuracy of the other subsystems is even less
well known. Proponents argue that the interaction of the physical subsystem with the rest
cannot be ignored.

This note tries to sort out the underlying assumptions, in an attempt to take away the
prevailing confusion. The ideas are not new, but it is hoped that presenting them here may
help stimulate the discussion.

Forecast models are often interpreted as stochastic models, predicting probabilities.
Therefore, we begin with a discussion of these models. Next we will discuss the concept
of probability, which is essential for understanding predictability and the meaning of
model forecasts.

2. Stochastic models

Consider first a closed model system, which can be described by 2 prognostic variables X,
and for which we know the law of evolution M apart from the value of (a set of) parame-
ters and forcing variables A:

M(A): X(t,) — X(b). | | (1)

The evolution operator M is nonlinear, in general, and acts on the state vector X to
compute the state at a later time. In physical models it usnally results from the discreti-
zation of a set of (integro-)differential equations. To be specific X may be thought of as
the positions and velocities of interacting point particles; A would be their masses and M
would be given by classical mechanics,

In this approach X and A are random variables (X is a “stochastic process’, see for
example, Doob, 1953), so they define probability distributions f, and f, with the property
that

Selx)dx 2

is the probability that X has a value between x and x + dx, and similarly for f,.

In practice, we are often dealing with very complex systems with many degrees of
freedom for which we have only limited knowledge abouwt the laws of evolution. An
example is an atmospheric model, in which case X would represent air pressure, velocity,
density, temperature, etc. of the atmosphere on a finite difference grid on the globe at
specified levels. But X can also be much larger: it could include ocean and sea-ice
variables, the chemical composition of the atmosphere, emission rates, oil price, inflation
rate, deforestation rate, etcetera. Typically X has 10° - 10® components or more.

One of the central problems in modelling is the correct choice of the (high dimensional
vector) space §, in which to describe the phenomena of interest. The choice of parameters
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A and dynamical variables X requires a careful analysis of the system and the objectives of
the study. In one approach the CQ, emission rate could be prescribed as a parameter; in
another model it could be treated as a dynamical variable depending on energy price,
population growth and other variables. Often, the distinction between dynamic variables
and parameters is somewhat artificial. Therefore. it is interesting to compare the perform-
ance of models in different spaces S. This is most easily formulated by realizing that (1),
for a given choice of dynamical variables, can also be interpreted as a collection of
mappings (models) {M,} labelled with the possible values @ of A, each with their given
probability distribution. The generalization to the case of variable size of X and 4 is
obtained by considering the collection of (all) proposed models {S,, M,} specified by the
mappings

M, X(t) > X0, Xe §,. 3)

This collection comprises (1), but it is more general because it simultaneously includes
models in which the system is represented by state vectors in different spaces S, The
label o is not a scalar. It has one component labelling the different models (i.c. sets of
differential equations); the other components label the possible values of A. One may think
of atmospheric grid point models with different spatial (and temporal) resolution but also
of more complex biosphere models which do or do not include certain variables that may
or may not be marginal for understanding the system (blue algae or dimethylsulfide
concentration, for example).

3. The definition of probability

The definition of probability comes with a conceptual difficulty. Traditionally, one
considers the abstract concept of an ensemble of realizations of the system, each with
different values for the random components. When predicting the trajectory of a billiard-
ball one may specify the uncertainty in its initial position by performing many independent
measurements. This defines the ensemble - many billiard-tables with the balls initially in
slightly different positions - and the required probability distribution. In weather prediction
the distribution of A4 of (1) can be obtained by considering many similar situations in the
past, and by determining the corresponding realizations a of A.

However, this procedure cannot be followed in very complex models of the world,
because for all we know our world is quite unique at a given time, and therefore it is
simply not possible to find similar situations. In these cases it is still possible to use
statistical concepts, albeit on a rather different basis.

First, for simplicity, consider models of the type (1) and assume that the initial
conditions are accurately known, so that the uncertainty is in A. To obtain the desired
probability distribution one could then organize a simple Delphi-like procedure (see
remark below) in which the opinions of experts are used. This can be done in infinitcly
many ways, but to be specific consider the case where each expert is asked to give the
value of a that he finds most likely. From this then follows a probability distribution of A,
not based on a direct objective analysis of past events, but expressing the subjective
assessment of the expert panel. For a given panel this specifies the model uniquely. OF
course, the width of the distribution of A contains interesting infonmation, a narrow
distribution indicating consensus, a broad one meaning disagreement. Also, one could form
different panels and compare the results along the rules of test theory {(see for example,
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Crocker and Algine, 1986).

The same procedure may be applied to models of the type (3). Again there is an infinity
of possible methods from which one must select and again the specific questions asked to
the experts would be an integral part of the definition. An example? Suppose one
considers six ‘models’, consisting of two different (sets of) differential equations, each
with one undetermined constant which may assume three different values. Then one can
ask the experts to rank them in order of likelihood of describing correctly the change in
mean global sea level in the second half of the 21st century. The probabilities so defined
specify the likelihood of the models. They are a (subjective) measure expressing the
confidence experts have in the correctness of a particular model out of a given set. In this
case it is even more interesting than before to know the width of the distribution and to
apply test theory to the results of different expert groups.

In my opinion the traditional physical approach should be used whenever possible, in
particular for the modelling of physical subsystems, because the results of this approach
are much more likely to be correct. The gravitational acceleration at the surface of the
earth will be approximately 9.8 m/s* also in 2050. However, to estimate the interest rates
in that year the Delphi procedure could be helpful, because it quantifics the subjective
estimate of the uncertainty in this parameter and allows for numerical modelling of the
consequences of its uncertainty.

Remark In its original meaning the name Delphi method (see e.g. Linstone and Turoff,
1975) refers to a technique developed for obtaining judgements from a group of experts.
Characteristics are feedback, anonimity and statistical presentation. Here we use the term
in a loose way. Most conventional applications strive for consensus. The present
application leaves room for feedback, but consensus is not necessary.

4. The use of models

The models can be used in two ways independently from how the input probabilities have
been defined.

In the first type of model application (‘hindcasting’) one simulates the past and
compares model results with observations. These observations - let us denote them by O -
are themselves stochastic variables because of measurement errors. The so-called model
counterparts of the observations O™ are functions of the model state vector X. Model | is
usually considered to be better than model 1I in describing a particular observation O,
when the mean and variance (one must choose how to weight) of a time (or spatial) series
0; - O7(X) are smaller for [ than for II. If the difference between O, and O7(X) is unlikely
large the model is falsified. One may then attempt to construct a better model and, in fact,
it is along these lines that the understanding of the system is enlarged. In practice, one
wsually compares time series of particular realizations of O and 0" In true stochastic
models one could also attempt to validate the predicted probability distributions by
comparing them with the distribution of observations obtained by averaging over analog-
ous situations, but this is not usually done, and, in fact, as discussed in section 3, this
would be impossible in a unique complex system.

In the second type of application (‘forecasting’) one forecasts the future. The justifica-
@on is most easily expressed for traditional deterministic systems: (A) a system that
evolves according to model M will lead to a state x(¢); (B) suppose that reality behaves as
sach a system; then (C) in reality we expect state x(¢) to occur at time 7. Obviously, (B) is
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an assumption and for this reason at the moment the prediction is made there is no way of
establishing its future correctness. One may hit a billiard-ball in the right direction,
expecting with 100% certainty that the desired collision will occur, but the actual collision
may never come, because unexpectedly the billiard-table collapses due to woodworm.

For a stochastic model the argument would go as follows: (A) a system that evolves
according to the set of models {M,} will lead to a state X(f) (a set of states x, each with a
certain likelihood); (B) suppose that reality behaves as such a system; then (C) in reality
we may expect to find state x,(f) at time ¢ with corresponding likelihood. (The meaning of
this expectation in unique complex systems would differ from the conventional physical
meaning). But, again, at the moment the prediction is made there is no way of establishing
its future correctness. Our sophisticated stochastic climate predictions may be jeopardized
by the unexpected penetration of a large metcorite through the ocean bottomn.

5. Predictability

Let us first consider models of the type (I). We cannot, in general, compute a definite
value for X(1), because neither X(f,) nor A is known exactly. However, on the basis of
statistical information on X(#,) and A, we can make a statement about the probability of
finding a certain realization x(f). Given the probability characteristics of A and X the
probability distribution of X(z) follows:

M: (£,(@), fi,00) = fry®) - @

Equation (3) is realized most easily with the help of a Monte Carlo simulation, In such a
simulation one generates values for A and X(z)) on the basis of their probability distribu-
tions. For each set a, x(t,) one solves (1) which then automatically generates the probabil-
ity distribution of X(1). ’

In this context predictability can be defined as the inverse width of the probability
distribution of X(f), or more precisely, for a particular observable O, as the inverse width
of fmx‘)(ol.} . In chaotic systems this width gets quickly very large, even if the initial
condition and the values A are known rather accurately. With this definition of predictabil-
ity, it is quite possible for certain observables to be more predictable than others. Note that
this concept of predictability necessarily refers to the range of modelled possibilities.

For models of the type (3) the same arguments can be given. Once a likelihood has
beens assigned to each M, it is, in principle, straightforward to compute the comesponding
likelihood distribution of a predicted observable O,

It is fascinating fo speculate about something more profound. To this end consider a
hierarchy of stochastic models {S,, M,} (now labelled with a single integer n), more and
more refined with ever more dynamical variables. One might order them according to
complexity, say

dimension §, 2 dimension §, if n, > n, (5)
L]

Each model will predict a random state X,(f) from which the corresponding probability
distribution of some observable OT[X (D] is readily computed. We can then consider a
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sequence of model predictions {O7{X,(r)]} and we would call an observable predictable if

lim O7(X) )

Dern

exists, with n,,, the label of the most complex model considered. The basic idea is that
some observables are sensitive to additional complexities of the system, whereas others are
stable when you make the model more complex. To my knowledge such sequences have
not been studied. 1 expect that for a given sequence of models some observables will be
predictable and others will not, whereas for each observable one can construct a set of
models in which this observable is not predictable. I have not attempted to prove these
conjectures. They scem to be related to our inability to know the future and could perhaps
explain why some observables are much harder to predict than others.

6. The psychology of decision making

In daily life, as in physics, one always makes ‘models’ of the future. These do not need to
take the form (1) or (3), but they have in common with (1) and (3) that they are represen-
tations of the system in the neural network of the human brain, and that their predictions
of the future need not come true. For instance, you want to go out and you expect that it
will rain, so you pick up an umbrella. But then the model tums out to be inadequate,
because there may be so much wind that you cannot use the umbrella or another unex-
pected event (not ‘modelled’) may prevent you from leaving the house.

Often people make decisions with a more or less explicit concept of the desired future
situation in mind. They then select from possible courses of action by using (numerical)
models to estimate the effect of these decisions on the future. From the foregoing
discussion it will be clear that these models do not ‘know’ the future, but they can be used -
to generate possible future states with a certain likelihood. The argument then goes: if we
do this, then there is a probability that such and so. After scanning all possible decisions
they make that decision that brings them with the highest likelihood closest to the desired
situation (see for example Lindley, 1985). It is interesting to note that decisions are always
made on the basis of models, never on the basis of knowledge of the future state.

7. Conclusions

» A Delphi approach makes it possible to use stochastic mathematical models for
forecasting, even for a complex system in which certain parameters are not known from
experience,

» We have seen that it is not possible to base decisions on knowledge of the future. In
fact, one always uses ‘models’ to generate scenarios with an attached likelihood. If the
model predictions do not come true, decisions may have taken us away from the desired
state, rather than that they have brought us closer to it.

+ Physical models of simple, (nearly) closed systems have a very large likelihood.
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* In case of complex systems, and difficult decisions, it appears useful to consider a large
variety of models.

* Experts need not strive for consensus. A diversity of opinions could lead to better-

decision making, because it allows one to consider a larger number of possible futures,
which reduces the risk of overlooking an important scenaric with a small likelihood (a
bifurcation in the thermohaline circulation of the world ocean, for example).

¢ It might be uscful to pay more attention to details of Delphi procedures, such as the
selection of (groups of) experts and the formulation of the questions asked.

8. Concluding remark

This note sketched a rationalistic approach to decision making, which pretends that one
can control the system, to some extent at least. Of course, there are other approaches as
well. For example, some people - they may be called ethicists - act according to certain
principles (‘thou shalt not lie’) which they follow, irrespective of where it takes them.
True modellers can not be stopped by this. On the contrary, they will be inspired to add
two kinds of human actors to their models - rationalists and ethicists - and they would
attempt to model the consequences of the interaction between these actors and the rest of
the system.
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